

Hon. Justice Rachel Pepper Chair Hydraulic Fracturing Taskforce GPO Box 4396 DARWIN NT 0801

Via email: fracking.inquiry@nt.gov.au

Jemena Limited ABN 95 052 167 405

Level 16, 567 Collins Street Melbourne, VIC 3000 PO Box 16182 Melbourne, VIC 3000 T +61 3 9173 7000 F +61 3 9173 7516 www.jemena.com.au

28 April 2017

Re: Scientific Inquiry into Hydraulic Fracturing in the Northern Territory

Dear Justice Pepper

Jemena welcomes the opportunity to respond to the Scientific Inquiry into Hydraulic Fracturing in the Northern Territory's (the **Inquiry**) Background and Issues Paper (the **Paper**).

Jemena owns and operates a diverse \$9 billion portfolio of energy and water transportation assets across eastern Australia, including electricity and gas distribution networks and gas transmission assets throughout eastern and northern Australia. We are currently constructing the 622 kilometre Northern Gas Pipeline (**NGP**) from Tennant Creek in the Northern Territory (NT) to Mount Isa in Queensland.

Gas plays an important role in the Australian and NT economies as it provides an affordable, reliable and low emissions source of power for Australian households, electricity generation, commercial customers and large industrial users. Gas Vision 2050, an industry collaboration, provides a platform for gas to not only provide affordable, secure and low emissions energy now, but to transition into an carbon neutral future to meet customer's and society's expectations. I have attached a copy of Gas Vision 2050 to Jemena's submission for your deliberations.

Despite the significant role gas has in the Australian economy, there is currently a gas shortfall in the Australian east coast market which is impacting on energy security and affordability. The NT is well placed to develop the gas reserves to meet this shortfall on the east coast of Australia, due to its existing onshore resources located in the Amadeus basin in Central Australia and other gas basins that are yet to be commercialised, including the Beetaloo sub-basin.

However, moratoria have been applied to unconventional onshore gas exploration and development in some Australian jurisdictions in response to community concern about the environmental, community and social impacts of hydraulic fracturing or 'fracking' methods to extract the gas. There is a large body of scientific research both in Australia and internationally (including the *Report of the Independent Inquiry into Hydraulic Fracturing in the Northern Territory by Dr Allen Hawke*) which has found that an unconventional onshore gas industry can be viable and safe within an appropriate regulatory framework. Where possible, the Inquiry should leverage this previous research, and where appropriate, build on this body of work. Utilising this large body of scientific research will provide the Inquiry's Expert Panel with a strong basis to assess and determine the overall risk associated with hydraulic fracturing to the NT.

Please contact **Example** like to discuss our submission.

if you would

Yours sincerely

Shaun Reardon Executive General Manager—Customer & Markets

Gas Vision 2050

Reliable, secure energy and cost-effective carbon reduction

Contact details

Please provide feedback or raise any queries by contacting the following.

Energy Networks Australia

E: info@energynetworks.com.au www.energynetworks.com.au

Australian Petroleum Production & Exploration Association

E: appea@appea.com.au www.appea.com.au

Australian Pipelines and Gas Association

e: apga@apga.org.au www.apga.org.au

Gas Energy Australia

E: mail@gasenergyaustralia.asn.au www.gasenergyaustralia.asn.au

Gas Appliance Manufacturers Association of Australia

e: info@gamaa.asn.au www.gamaa.asn.au

GAS IN AUSTRALIA TODAY: CLEAN, ESSENTIAL, RELIABLE

Natural gas provides 44% of household energy but produces only 13% of household greenhouse gas emissions.

Australia's gas infrastructure can store the same amount of energy as 6 billion Powerwall batteries. Almost 70 per cent of homes use mains or bottled gas: that's **6.5 million homes and growing.**

949,000 Jobs

Half of gas used in Australia is for mining and manufacturing, contributing \$196 billion to the economy, employing 949,000 Australians.

380,000

There are **380,000** gas vehicles in Australia.

By 2020, Australia's LNG exports will make up **20% of global exports.** Modern gas power generation produces half the emissions of high-efficient coal plants and are much cheaper to build.

Natural gas is an essential material for creating products such as fertilisers, plastics and chemicals.

Deloitte. Access Economics

Deloitte Access Economics analysis (2016) based on Australian Bureau of Statistics data.

Contents

Gas in Australia today: clean, essential, reliable	1
Foreword	3
Gas's decarbonisation journey	5
Gas: supporting the energy transformation to 2030	7
Potential transformation opportunities	9
Policy settings	11
Low emission transformational technologies	13
Biogas	14
Carbon capture and storage	15
Integration of gas and hydrogen	16
Technology mix	17
Gas Vision 2050	19
Gas in the 2050 home	20
Gas in cities in 2050	21
Gas in industry in 2050	22
Gas power generation in 2050	23
References	24

Foreword

Today, gas is essential to our economy and modern lifestyles. In the future, gas will continue to be essential as Australia makes the transformation to a cleaner energy future.

Whether it's for hot water, domestic heating, or gas-fired cooking, gas plays a central role in the lives of over 6.5 million Australian households. Today, gas delivers 44% of Australia's household energy but only 13% of household greenhouse gas emissions.

Gas provides nearly a quarter of Australia's total energy supply. Gas also plays an important role in our economy with approximately 130,000 commercial businesses relying on gas. Major industries use gas for energy and as a feedstock for manufacturing products such as plastics, chemicals and fertilisers. Figures collated by Deloitte demonstrate that gas underpins a variety of local industries. It estimates that half of the gas consumed in Australia is used in manufacturing and mining industries that contribute \$196 billion to the national economy employing 949,000 Australians.

Our vision is for Australia to turn its gas resources into products and services that will enhance national prosperity while achieving carbon neutrality.

Gas has an essential role to play in reducing emissions. In the home, gas is a cleaner fuel than electricity from the grid. Fuel switching from coal to gas offers the most immediate and risk-free option to cut emissions from the electricity generation sector. Jacobs foresees at least a tripling of gas-fired generation as part of its least cost path to achieving our nation's 2030 emissions target. Gas-fired generators can be rapidly started making them complementary with intermittent renewable energy. Exporting gas as LNG will allow our Asian trading partners to reduce the emissions from their economies.

Over the long-term, gas will have its own decarbonisation journey. New fuels, such as biogas and hydrogen, have the potential to become mainstream and complementary energy solutions that will use existing energy infrastructure. Biogas, for instance, can make use of landfill or agricultural and forestry waste to produce a net-zero emissions fuel. Hydrogen can be produced from natural gas or through electrolysis using off-peak renewables. Carbon capture and storage is a proven technology for removing greenhouse gas emissions and can be applied to power generation, industrial processes that use natural gas, hydrogen production from methane, or even biogas production resulting in negative emissions. This leads to emissionfree energy, where hydrogen can then be stored in the gas network, providing reserve energy in the same way battery technology does, in a carbon-neutral, secure and costeffective manner, while also providing interseasonal energy storage.

This Gas 2050 Vision report is the next step in our gas journey. It reflects the ambitions of key organisations which represent Australia's gas sector. It shows that gaseous fuels have a pivotal role to play in Australia's low carbon future to 2050 and beyond. Our plan is for this Vision to be refined and further developed as the role of gas in Australia's energy mix continues to evolve.

an William

Ben Wilson Chair, Gas Committee Energy Networks Australia

John Griffiths Chief Executive Officer Gas Energy Australia

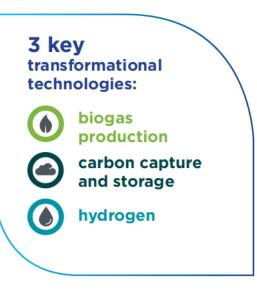
M. Roberto

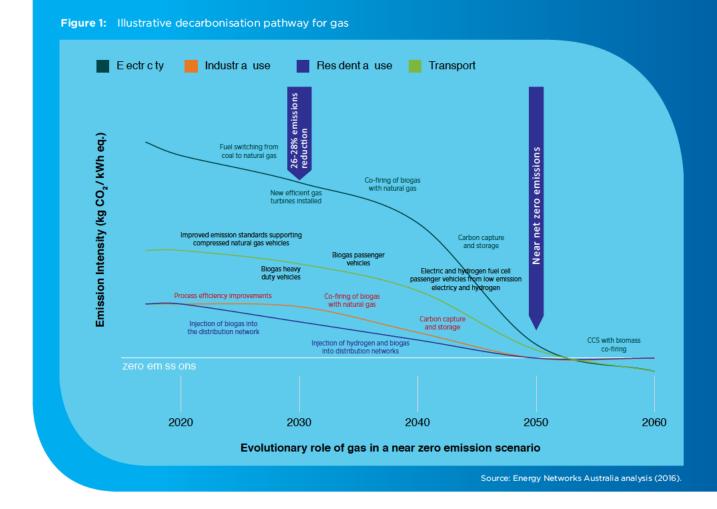
Dr Malcolm Roberts Chief Executive Australian Petroleum Production & Exploration Association

andunkent

Andrew Creek AOM President Gas Appliance Manufacturers Association of Australia

Dr Shaun Reardon President Australian Pipelines and Gas Association


Gas's decarbonisation journey


Australia's journey towards decarbonisation will present many opportunities. The gas sector is well-placed to provide reliable and secure energy and cost-effective carbon reductions by 2050 across the entire economy, from power generation, industry, transport and within the home.

These opportunities will require deployment of three key transformational technologies:

- biogas production
- carbon capture and storage
- hydrogen.

One illustrative decarbonisation pathway of gas is shown below.

Gas: supporting the energy transformation to 2030

The Australian energy sector is undergoing a major transformation.

One of the major drivers for this transformation is the decarbonisation of the energy sector in line with the COP21 Paris agreement. This agreement seeks to reach global peak emissions as soon as possible and achieve net-zero emissions in the second half of this century so as to limit global warming to 2°C. Australia has committed to this agreement and has a 2030 emission target of 26 to 28% below 2005 levels.

Achieving these emission reductions will require major changes to the energy system that will include how energy is used in households and by industry, as well as to the energy mix for power generation. This needs to be carefully managed to ensure an optimum solution is implemented that balances environmental outcomes (clean), energy security (reliable) and costs (affordable), a challenge that is known as the energy trilemma.

Gas is already a cleaner energy source than grid-sourced electricity. Beyond 2030, additional effort will be required to ensure the emission intensity of gas continues to reduce in line with international carbon abatement goals. There are many other factors that will influence the transformation of the energy sector. These include:

- Australia's ageing power fleet and the closure of coal-fired power stations, such as the planned closure of Victoria's Hazelwood power station in early 2017.
- The increased level of residential rooftop photovoltaic (PV) throughout the network will reduce electricity generation demand from other sources. It is projected the number of rooftop PVs installed will continue to grow, even with reduced government subsidies.
- The projected growth in electrical vehicles will require additional electricity generation.
- Gas infrastructure already reaches 6.5 million homes. Leveraging this existing infrastructure makes economic sense.
- Growing gas distribution networks to new regions in Australia.
- Reduction of household gas consumption due to improved housing efficiency and warming weather.
- The intermittent nature of renewable generation and the additional cost for energy storage to allow it to be dispatchable.
- A tighter gas supply market with exploration and development restrictions for onshore gas in many Australian jurisdictions.

Gas will play a central role during this transformation and provides the following benefits to the Australian economy to 2030 and beyond.

In the home, direct use of gas will continue to offer lower emissions compared to electricity from the grid. Compared to electric resistance hot water systems¹, gas provides a cheaper option for hot water services within the home. Natural gas provides 44% of household energy but produces only 13% of household greenhouse gas emissions. Almost 70 per cent of homes use mains or bottled gas: that's 6.5 million homes and growing.

In cities, gas plays an important role within business districts and commercial buildings. It is used as a preferred energy source in restaurants. In businesses, such as laundries, or hospitals, gas provides hot water and steam. By using co-generation or tri-generation technologies, it can also provide heating, cooling and electricity to these organisations.

Within industry, gas is an essential feedstock for many chemical manufacturing processes, including plastics and fertilisers. In turn, these products can then be used in manufacturing or agriculture. Gas is also a preferred energy source as it provides high quality and clean heat to industrial processes. The opportunities for replacing gas in industry with renewables are quite limited as solar energy cannot provide the same quality of heat². Half of the gas consumed in Australia is used in manufacturing and mining industries that contribute \$196 billion to the national economy employing 949,000 Australians.

For power generation, gas continues to provide energy security as the level of renewable generation increases and base load, coal fired power stations are decommissioned. Gas generates electricity at lower emissions than coal fired power, so increasing the amount of gas used for electricity also helps reduce Australia's greenhouse gas emissions from power generation. Efficient gas power generation produces half the emissions of new high-efficiency coal plants and are much cheaper to build.

Gaseous fuels such as CNG, LNG and LPG enable regional and remote communities to enjoy the many benefits of gas and can also be used as transport fuels in passenger vehicles, public transport, trucks, railway and shipping. Over time, these fuels can be supplemented by biogas

The International Energy Agency³ forecasts the Asian demand for natural gas to more than double between 2014 and 2040. This demand will provide good opportunities for LNG exports from Australia to supply the growing energy demands of our region. By 2020, Australia is expected to be the world's largest LNG exporter and will make up 20% of total global LNG exports.

1 Core Energy Group (2014), Gas Network Sector Study, available from:

www.energynetworks.com.au/ena gas network sector study core energy group

- 2 ITP Renewables (2015), ARENA Report Report on renewable energy options for Australian industrial gas users, www.itpau.com.au/re for australian industrial gas users
- 3 International Energy Agency (2016), World Energy Outlook 2016 Chapter 4.

The role of gas to 2030 and beyond requires the use of existing infrastructure and future network investment to support the needs of gas consumers. Using existing gas infrastructure is a sustainable and efficient approach to supporting future supply of energy. Increasing the proportion of electricity in the future energy mix would require building new electricity infrastructure.

Potential transformation opportunities

Modelling completed by AEMO⁴ and Jacobs⁵ shows that the level of gas consumption will remain largely unchanged for households, businesses and industry out to 2030. Additional gas consumption is forecast in power generation in line with Australia's emission reduction targets. The study by Jacobs focused on this abatement outcome and found that gas used in power generation will see at least a tripling by 2030 to achieve the required emissions reduction from the electricity sector.

Separate work by McKinsey⁶ found that there were commercially attractive opportunities for switching to gas in the transport sector. These opportunities reflect the use of CNG or LNG in heavy transport such as trucking, mining, buses, ships and rail.

The global demand for gas is forecast to increase, as per the International Energy Agency's projections, leading to greater potential export opportunities for Australia. This will require ongoing exploration and development of both conventional and unconventional gas fields with the correct policy settings to facilitate this activity.

"Global demand for gas is forecast to increase."

International Energy Agency, 2016

Gas-fired generation supports the security and reliability of the power system⁷. Gas plays a key role in providing energy security as demonstrated by the return to service of older gas-fired plants in South Australian and Tasmania recently to supply power during the 2016 outage of Basslink to Tasmania and the Heywood connector to South Australia. Gas can continue to provide energy security as older generation assets retire.

There will be challenges but the opportunities for gas out to 2030 and beyond are clear. It is important to ensure the correct policy settings so gas can contribute to addressing the challenges of the energy trilemma.

Deeper decarbonisation will depend on three transformational technologies that can be demonstrated by 2030 and then widely deployed between 2030 and 2050.

> "Gas-fired generation supports the security and reliability of the power system."

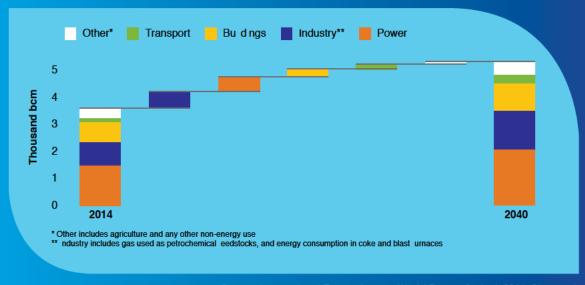
⁴ AEMO (2016), National Gas Forecasting Report for eastern and south eastern Australia, December 2016, available from www.aemo.com.au

⁵ Jacobs (2016), Australia's Climate Policy Options Modelling of Alternate Policy Scenarios, available from www.energynetworks.com.au

⁶ McKinsey & Company (2016), The role of natural gas in Australia's future energy mix, June 2016, available from www. appea.com.au

⁷ Finkel, A. (2016), Independent Review into the Future Security of the National Electricity Market Preliminary Report, December 2016.

BOX 1: GLOBAL GAS MARKETS.


The International Energy Agency⁸ (IEA) recognises that gas is the least carbon intensive of the fossil fuels and thus burning gas is a much more efficient way to use a limited carbon budget than combusting coal or oil. The 2016 World Energy Outlook provides a New Policies Scenario that represents the pledges made by more than 180 countries in how they will reduce their greenhouse gas emissions as part of the COP21 Paris agreement. The outlook for the medium term indicates that markets for coal, oil and gas are all oversupplied until the 2020s and that global gas demand will continue to grow at 1.4% per year until 2020. The longer-term modelling shows that global gas demand continues to grow on average by 1.5 % to 2040.

The power sector is the largest gas consuming sector, accounting for 40% of worldwide gas demand today, and it contributes 35% to global gas growth - the same as industry. However, this sector also faces the greatest uncertainty because of the number of competing fuels for power generation ranging from coal to renewables. The IEA notes that gas-fired technologies entails a far lower capital cost compared to coal generation. Depending on the relative fuel (and carbon prices) the lower investment cost can offset the typically higher fuel costs of gas plants. The cost of combined cycle gas turbine amounts to approximately \$1,000 per kilowatt, which is half the cost of high-efficiency supercritical coal plant.

Natural gas demand for industry is also forecast to grow by over 50% mainly due to rising demand for the process heat and steam generation needed to meet the requirements of economic growth.

Gas consumption for residential and commercial buildings is forecast to increase by 50% by 2040. Thirty percent of that growth comes from China alone. With the envisaged expansion of China's gas distribution network, scope for gas to displace coal, oil and the traditional use of biomass is large in the Chinese building sector. Growth opportunities for gas demand in the buildings sector for developed countries are limited as heating demand is largely saturated, energy efficiency of buildings continues to improve and coal and oil have been largely displaced from buildings.

Gas demand for transport is forecast to more than double the current levels. This growth is primarily driven by road transport which accounts for two-thirds of the total growth demand with the remainder being taken up by marine transport where the role of LNG as a bunker fuel rapidly rises. The key uncertainty for the future role of gas in the transport sector continues to be the dilemma around refueling infrastructure.

Figure 3: World gas demand growth by sector in the New Policies Scenario

Source: International Energy Agency, World Energy Outlook 2016, Chapter 4.

Policy settings

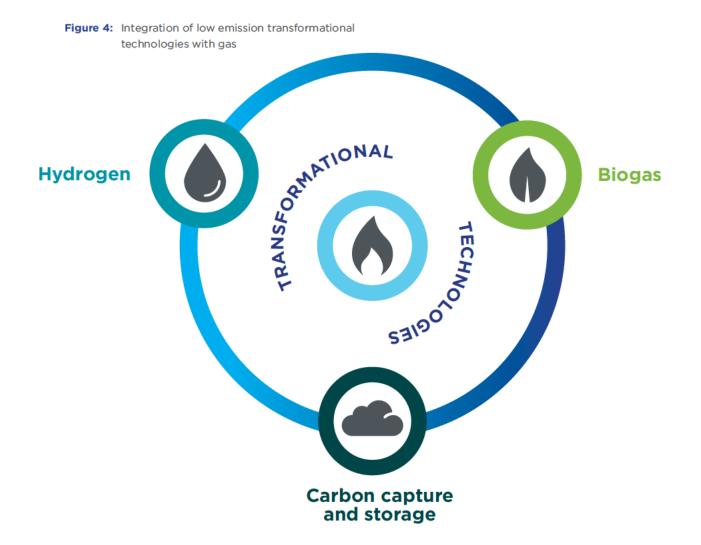
Australia's policy settings can strongly shape what Australia will look like in 2030 and 2050. The gas industry's preferred policy settings revolve around:

- Australia contributing fairly to the global reductions of greenhouse gas emissions and pursuing these targets with a technology neutral approach.
- Ensuring security across the energy system by considering renewables, electricity and gas as a single energy system.
- Avoiding unnecessary regulation or placing unwarranted restrictions on the development of industry.
- Allowing markets to work effectively to reduce costs to consumers and increase economic benefit.

Proposed policy settings and their influence on economic outcomes are outlined below.

Policy settings	Eco	Economic Outcome		
	Env ronmenta outcomes	Energy Secur ty	Cost Effect veness	Jobs & Econom c Growth
Continue to ensure that gas expansions for new residential and commercial developments are based on economic outcomes.	\checkmark	\checkmark	\checkmark	\checkmark
Ongoing support for research, development and demonstration of a diverse range of low emission technologies.	\checkmark	\checkmark	\checkmark	\checkmark
By mid-2017, achieve COAG agreement to appoint an independent agency to complete an independent assessment of national energy market implications, including power systems security, when developing jurisdiction initiatives on carbon and renewables policy.	\checkmark	\checkmark	\checkmark	
By end 2017, agree and establish an enduring, stable and nationally integrated carbon policy framework based on consensus.	\checkmark		\checkmark	\checkmark
By end 2017, adopt a scientific approach for approving gas exploration instead of regional bans on gas exploration and development.	\checkmark	\checkmark	\checkmark	\checkmark
By 2018, implement an appropriate light vehicle emissions standard policy, supporting COP21 climate goals.	\checkmark	\checkmark	\checkmark	
By 2019, complete a review of the effectiveness of federal and state governments' direct incentive programs that are focused at providing technology specific support beyond 2020.		\checkmark	\checkmark	
By 2019, establish regulatory frameworks that encourage innovation in industry.	\checkmark	\checkmark	\checkmark	\checkmark
By 2021, ensure gas markets are operating to achieve optimal outcomes for domestic gas users and gas exporters without introducing energy market distortions, such as reservation policies.		\checkmark	\checkmark	\checkmark
By 2020, establish a national climate change policy response that delivers greenhouse gas emission reductions at least cost and facilitates broad based investment decisions consistent with an international price on carbon.	\checkmark	\checkmark	\checkmark	\checkmark
By 2022, review Australia's nationally determined contributions to ensure they remain aligned with achieving the long-term objectives of the COP21 Agreement.	\checkmark		\checkmark	\checkmark

Table 1: Proposed policy settings and their influence on economic outcomes



Low emission transformational technologies

The energy sector faces the challenge of cutting greenhouse gas emissions without compromising safety, security and affordability. Innovation will be key to achieving this goal.

Amongst many technology options, three transformational technologies stand out for producing low emissions from the use of gaseous fuels, biogas, carbon capture and storage (CCS), and integration of gas and hydrogen.

These three technologies can be used to slash emissions from gaseous fuels, ensuring that the benefits of gas can continue to be enjoyed in a decarbonising economy beyond 2050.

Biogas

Biogas is a term that covers gaseous fuels such as biomethane or biopropane recovered from renewable sources including wastewater, landfill, agricultural or forestry waste. This means there are net-zero emissions from its use. Feedstock sources for biogas are widely available and diverse, so biogas could be produced at many different locations close to users and simply injected into the existing network. ARENA is funding a study⁹ to identify and assess the bioenergy sources across Australia. This project will provide reliable nationwide information on biomass feedstocks, which will support the development of bioenergy and biogas projects across Australia.

Production of biomethane, which is the same as natural gas, is a well-established process using currently available commercial technologies. It can be mixed with natural gas in transmission and distribution networks with no modifications of user appliances or industrial processes required. Production of biopropane, which is the same as propane in LPG, is becoming established overseas. It can be used as a transportable gaseous fuel in areas where the gas network does not extend. Biogas can be stored in the distribution or transmission networks, or within cylinders, effectively providing renewable energy on demand. Biomethane converted to CNG or LNG or biopropane can also be used as transport fuel.

The potential for biogas is significant. In Canada¹⁰, it is estimated that up to 1,300 billion cubic feet of biogas could be produced annually, representing approximately 50% of domestic gas consumption. In the UK¹¹, it is estimated that between 30 and 50% of natural gas demand could be met from the production of biogas. The Clean Energy Council¹² estimates that Australia's bioenergy has the potential to power 10.2 million homes by 2050, although that is mostly focused on using biomass for power generation instead of the production of biogas. Regardless, the potential for biogas is significant.

Converting waste to biogas also benefits our environment through improved waste management and reduced waste.

Producing biogas from biomass uses a commercially available reactor that reduces the biomass to biogas. This gas is then processed prior to being injected into the distribution network. This practice is common in Europe, especially in Norway, Germany and the United Kingdom. Within Australia, the largest biogas reactor is located near Goulburn, New South Wales, and processes 20 percent of Sydney's household waste. This reactor¹³ is located at an old mine site. The biogas produced is converted to green electricity, but also provides heat for an aquaculture farm. Another project¹⁴ in Western Australia, uses a specialised process to convert biomass into biogas. This project procured and modified technology from European vendors. Once again, the current setup is focused on generating green electricity but the project could just as easily be configured to produce gas that can be injected into the gas network as renewable gas.

There are no technical obstacles to biogas production. It has been proven on a commercial basis for producing renewable electricity and the produced gas could easily be injected into the distribution network as renewable gas.

⁹ ARENA (2016), The Australian biomass for bioenergy assessment project, https://arena.gov.au/project/the australian biomass for bioenergy assessment project/

¹⁰ Canadian Gas Association (2014), Renewable natural gas technology roadmap for Canada, December 2014.

¹¹ National Grid (2016), The future of gas supply of renewable gas, available from http://www2.nationalgrid.com/UK/ Industry information/Future of Energy/Gas/

¹² Clean Energy Council (2012), Bioenergy fact sheet, available from: https://www.cleanenergycouncil.org.au/cec.html 13 www.veolia.com/anz/our services/services/municipal residential/recovering resources waste/woodlawn bioreactor 14 Jandakot project biogas, available from: https://arena.gov.au/files/2015/11/Jandakot Bioenergy Plant.pdf

Carbon capture and storage

Carbon capture and storage (CCS) combines a range of commercially available technologies – used widely by the oil and gas industry – to limit the amount of greenhouse gas emissions reaching the atmosphere.

CCS is comprised of three processes that need to be integrated for effective reduction of greenhouse gases¹⁵.

- Firstly, the carbon dioxide (CO₂) is separated. This is already widely practised in gas processing where the CO, needs to be removed from the raw produced gas to meet pipeline specifications. For example, the Sleipner project in Norway has separated CO₂ from natural gas since the early 1990s and has successfully stored 16 million tonnes of CO, in the subsurface instead of emitting it to the air. CO, separation is also carried out in industrial processes such as hydrogen or fertiliser production. Within the power generation sector, research has been undertaken to modify these capture processes to make them suitable for power generation. The Boundary Dam project in Canada is the world's first demonstration of carbon capture at a commercial coal-fired power station and another three commercial scale CCS projects are expected to commence operation in early 2017 in the power generation sector.
- Secondly, the CO₂ is compressed and transported to the storage site. It is most commonly transported via pipeline, although shipping can also be a viable alternative. Transporting CO₂ in pipelines is common practice, with the United States alone having over 7,600 km of high pressure CO₂ pipelines in operation. These provide naturally occurring CO₂ to oil and gas fields for enhancing oil recovery from those fields.

Lastly, the CO₂ is injected in suitable geological formations, thereby preventing it from reaching the atmosphere so it does not contribute towards global warming. Geological storage has been widely carried out in enhanced oil recovery operations, although some of that CO₂ is subsequently recovered. Alternate storage sites have no CO, recovered. At the end of 2016, 29.5 million tonnes of CO2 were geologically stored per annum, with a further four projects nearing completion that will inject a further 8.8 million tonnes per annum. One of these projects is Australia's Gorgon project¹⁶ that is separating the reservoir CO₂ and reinjecting that into the surface from its LNG operations. CO₂ injection at this project is expected to come online in the first half of 2017.

While the technology is commercially demonstrated in gas processing, at industrial processes and for power generation around the world, its deployment has been slow. CCS will be required if the level of global emission reductions as agreed at the international negotiations in Paris in 2015 are to be achieved¹⁷. The International Panel for Climate Change (IPCC) noted in its *Climate Change 2014*¹⁸ report that that the mitigation cost of achieving the Paris targets (450 parts per million CO₂) could be 138% more if CCS is not available.

Australian CCS activity is focused on improved understanding of geological storage sites and conditions. Major projects¹⁹ have been funded to help increase the knowledge of the geology and its potential for carbon storage. Additional research²⁰ is also being supported to improve the understanding of: subsurface knowledge and mapping; transport infrastructure, technology and methodologies; whole-of-chain integration and cross-cutting issues; and, development of international collaboration. This work is continuing.

17 United Nations Framework Convention on Climate Change (UNFCCC) 2015 Paris Climate Change Conference

¹⁵ Global CCS Institute (2016), The global status of CCS 2016, available from www.globalccsinstitute.com

¹⁶ Chevron, Carbon Dioxide Injection Project, www.chevronaustralia.com/docs/default source/default document library/fact sheet gorgon co2 injection project.pdf?sfvrsn=16

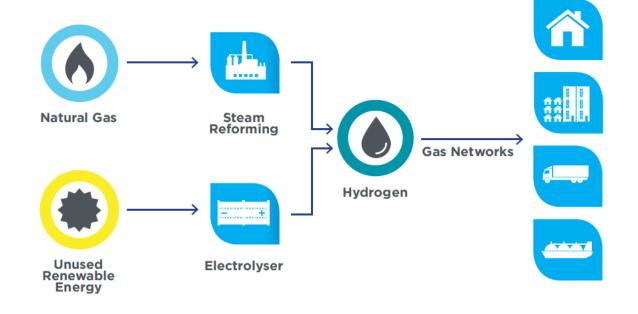
¹⁸ IPCC (2014), Climate Change 2014: Synthesis Report Summary for Policymakers, available from http://ipcc.ch/ report/ar5/syr/

¹⁹ Department of Industry (2016), https://industry.gov.au/resource/LowEmissionsFossilFuelTech/Pages/Carbon Capture Storage Flagships.aspx

²⁰ Department of Industry (2016), https://industry.gov.au/resource/LowEmissionsFossilFuelTech/Pages/Carbon Capture and Storage Research Development Demonstration Fund.aspx

Integration of gas and hydrogen

Hydrogen is the most abundant chemical element in the universe and the third most abundant element on the Earth's surface.


Hydrogen is a clean burning fuel that only produces water vapour during combustion. Hydrogen can be used as a supplement, or as an alternative, to methane in gas networks or in fuel cells to generate heat or electricity. These in turn can provide energy for vehicles, homes or commercial buildings. Hydrogen is not new as a gaseous fuel. Prior to the introduction of natural gas, town gas produced from coal - was distributed in towns and cities, and was first used in Australia in 1841. This fuel was made from a variety of raw materials, usually coal, and town gas consisted of 50 to 60% hydrogen. The conversion to natural gas started in Adelaide, Brisbane and Melbourne in 1969 and in Sydney in 1976.

The conversion to hydrogen networks is driven by the need to reduce greenhouse gas emissions. While direct use of natural gas already has one-quarter to one-sixth the emissions of grid based electricity in coal-powered states, in the longer-term, even those emissions may need to reduce. Initially, carbon reductions may be achieved by blending biogas with methane in existing plastic natural gas distribution networks. Further emissions reductions could occur by increasing the proportion of biogas or blending with hydrogen in networks resulting in a mixture of natural gas, biogas and hydrogen. Hydrogen volumes of up to 10% are already injected in the network in Germany without modifications to the network or appliances. If required for greenhouse gas emission reductions, entire networks may be converted to pure hydrogen or mixtures of hydrogen and biogas in the long-term. This may require some modifications to existing gas appliances but a suitable transformation program could be developed to minimise the cost and impacts on consumers.

Currently, hydrogen is commonly produced from natural gas. Cities around the country have natural gas delivered via long distance transport of gas (e.g. transmission pipelines or potentially LNG tankers), so adding production facilities at cities' edges to produce hydrogen, and injecting the hydrogen into the distribution system, is easily achievable. Any CO₂ by-product could be stored securely through CCS or used in the production of other materials. These innovations create the potential for clean, dispatchable energy resulting in zero emissions while using existing infrastructure. Preliminary planning and feasibility studies of a project like this have been completed for the city of Leeds²¹, UK. The intention of that project is to convert 264,000 households and business from natural gas to hydrogen by 2030.

An alternative is to produce hydrogen using electrolysis powered by excess renewable energy. With generation from renewables unlikely to coincide with demand from energy users, efficient storage solutions are essential. Unused energy generated by renewables could be converted to hydrogen through power-to-gas technology. The hydrogen could then be stored in the gas network. In these systems, which are already in use today (for example, the 2MW powerto-gas demonstration plant in Falkenhagen, Germany), surplus renewable energy can be used to electrolyse water. This then releases pure hydrogen, which can be injected and stored in existing networks thereby avoiding expensive new batteries.

Hydrogen can be stored in the gas pipeline network or in underground storage. These integrated solutions help to address the intermittency of renewable energy sources and enable a secure transformation to a netzero emissions energy system. The storage of hydrogen provides short term supply of gas as well as inter-seasonal supply of gas. Exporting hydrogen from Australia from either natural gas with CCS or excess renewable energy, provides a significant economic opportunity. For example, Japan has developed a roadmap²² for hydrogen and Japanese businesses²³ are looking at Australian natural energy resources to supply that hydrogen.

Figure 5: Hydrogen Pathways

²² METI (2014), Summary of the Strategic Road Map for Hydrogen and Fuel Cells, accessed from: www.meti.go.jp/ english/press/2014/pdf/0624 04a.pdf

²³ Kawasaki (2017), Kawasaki Hydrogen Roadmap, accessed from http://global.kawasaki.com/en/stories/hydrogen/

Technology mix

Ongoing research, development and demonstration of the three transformational technologies will be required to meet the global 2050 carbon reduction goal. All technologies described in this *Vision* have been demonstrated but additional work will be required to further improve the efficiencies and reduce their costs, as well as customising the technologies to Australian conditions.

It is expected that these and other energy technologies, such as energy storage and advanced solar photovoltaics, will all contribute towards the energy mix. The three transformational technologies will allow the benefits of natural gas to continue to be enjoyed in a net-zero emissions economy. Natural gas can continue to be used for industry and power generation where its emissions can be captured and stored using CCS. Or natural gas can be used to produce hydrogen which can then be injected into networks along with biogas and renewable hydrogen to provide zero emissions energy to households and cities.

The correct policy settings will encourage all technologies with an opportunity to contribute to the energy mix of 2050 and the optimal energy mix to meet the energy market requirements and account for energy security, cost-effectiveness and environmental outcomes. "The correct policy settings should be technology neutral."

Gas Vision 2050

Reliable, secure energy and cost-effective carbon reduction

This *Gas Vision 2050* (*'Vision'*) describes an aspirational and attainable future for gas across Australia's economy. With our population forecast to almost double to 40 million by 2050, Australia's need for energy, food and materials will only rise.

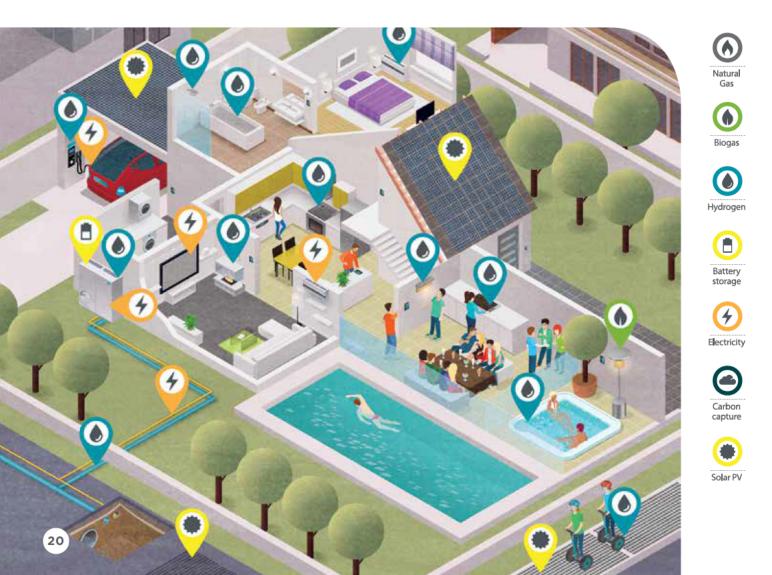
The Vision highlights how gas and renewables can support each other to achieve a near zero carbon energy sector by 2050, including a decarbonisation pathway for gas beyond 2050.

Gas will continue to benefit the economy and provide the following outcomes:

"With a forecast population of 40 million by 2050, Australia will need new sources of energy, food and materials."

The Vision describes major changes to Australia's energy mix and to the role of gas in this mix. The Vision is not an economic analysis or a price forecast. Rather, it seeks to extrapolate from today's technologies and trends, a future which meets the international aspiration of zero emissions beyond 2050, while delivering energy security, affordability, and jobs in Australia.

The following pages provide a conceptual framework of gas across the economy in 2050. It is the starting point of our journey and will be refined and further developed as the role of gas in the Australian energy mix continues to evolve.


Gas in the 2050 home

It is a Sunday afternoon in April 2050 and an Australian family is having friends around for a barbecue.

The guests arrive in shared driverless electric or hydrogen fuel-cell vehicles or drones, except for one family. They're going camping the next morning and have driven their hydrogen powered 4WD - which still has a steering wheel – to the barbecue. They are also taking a cylinder of biogas so they can cook and enjoy hot water while travelling.

Smart solar PV materials in the 'skin' of the house produce most of the family's electricity during the day. The home battery system is integrated into the family's electric vehicle and connects to the electricity grid. Zero emission hydrogen gas – via the distribution network from the local hydrogen production facility – provides the home with fuel flexibility and powers the family's hydrogen vehicles. Hydrogen is also used in fuel cells to generate electricity and complements the home battery system. It can also be used directly for hot water, heating or cooking where a range of coloured flames can be produced.

At night time, the outdoor entertainment area is heated using hydrogen space heaters. Away from the house, additional heating is provided using biogas in portable heaters.

Gas in cities in 2050

The city block of 2050 is an integrated energy system. Smog is a thing of the past as only clean fuels are used in the city.

During daytime, the city generates much of its electricity from integrated solar PV materials within the buildings' material. At times, the city can generate more power than it requires. This can either be stored in utility-scale batteries, exported through the transformed electricity grid and used elsewhere in the system, or converted to hydrogen and injected into the gas network for storage. As people park their vehicles they are automatically connected to the grid. Smart systems ensure that individual vehicles are charged at the right time - using either electricity or hydrogen - so the overall energy demands of the city are met. The grid also connects the city to low carbon power generation to ensure that the total electricity demand is securely met.

Hydrogen gas is produced at the edge of the city and injected into the gas network to meet additional energy requirements. This hydrogen can be used in tri-generation units to provide a range of cooling, heating and electrical services to buildings. Public transport within the city is largely powered using hydrogen in trains, ferries, driverless cars or drones. Goods delivery in the city is made possible through biogas fuelled trucks that are quieter and produce no pollution. The hydrogen is also used to refuel the hydrogen fuel cells of the cars from residents and visitors to the city.

Entertainment and dining in the city relies on hydrogen to provide control over cooking in restaurants. Hydrogen is also used to provide heating to outdoor dining areas and sporting venues.

Gas in industry in 2050

On a typical day in 2050, natural gas produced from onshore and offshore reservoirs is sold at the gas hub where contracts for export and domestic use of gas are met.

This gas is processed prior to sale. The CO₂ is removed and injected into the ground resulting in a clean gas. It is then exported or pipelined to cities and industrial precincts around the country.

Another shipment of natural gas – such as LNG - leaves the harbour, taking cleaner Australian energy to our neighbours in Asia. While renewable electricity generation in Asia has grown, large amounts of natural gas are still imported to support manufacturing and industry. On the horizon, another ship is waiting to dock and be loaded with Australian minerals and agricultural products. The waste materials from the agricultural and forestry sector are processed to produce biogas and shipped around the country for use in remote regions such as camping or remote mine sites, or for portable use around the home and city. Heavy transport relies on this biogas to move materials around the country.

Natural gas remains an important feedstock and energy source for materials manufactured domestically, such as fertiliser to support the growing agricultural sector, or plastics, cement and metals to support a growing construction sector. At the edge of cities, hydrogen is produced from natural gas, which is then injected into the gas network supporting that city.

Carbon capture and storage is used to ensure that the CO_2 from industry is not emitted into the atmosphere. Alternatively, the CO_2 is used to manufacture specialty chemicals and materials, resulting in zero emissions from industry.

Gas power generation in 2050

On a hot summer day in December 2050 the power generation sector is supporting the electricity demands of Australian households, businesses, cities and industry. Power blackouts on days like today are a distant memory.

Power generation is decarbonised and widely distributed using a wide range of technologies. While houses and cities generate their own power, and use carbonfree hydrogen for thermal loads, the electricity grid provides additional resilience and connects the electrical demand of the cities with power generation including large scale hydro, wind, solar thermal, and gas generation. Very high levels of renewables penetration has created large storage requirements. These are met through both grid scale batteries and traditional energy storage such as pumped hydro. Electrolysis produces hydrogen which can be stored underground and in the gas networks for later use or during the colder winter months.

Biogas is produced in regional Australia and this is combined with hydrogen in gas turbines to manage peak demand.

Natural gas generation with carbon capture and storage supports intermittent generation and provides ancillary services such as frequency support.

These technologies combine to provide secure, lowest cost and low emissions electricity for use across the economy.

References

AEMO (2016), National Gas Forecasting Report for eastern and south-eastern Australia, December 2016, available from www.aemo.com.au

ARENA (2016), The Australian biomass for bioenergy assessment project, https://arena.gov. au/project/the-australian-biomass-for-bioenergyassessment-project/

Canadian Gas Association (2014), *Renewable natural gas technology roadmap for Canada*, December 2014.

Chevron, Carbon Dioxide Injection Project, www. chevronaustralia.com/docs/default-source/defaultdocument-library/fact-sheet-gorgon-co2-injectionproject.pdf?sfvrsn=16

Clean Energy Council (2012), *Bioenergy fact sheet*, available from: www.cleanenergycouncil.org.au/cec. html

Core Energy Group (2014), *Gas Network Sector Study*, available from: http://www.energynetworks. com.au/ena-gas-network-sector-study-coreenergy-group

Deloitte (2016), *Gas Vision 2050 dataset*, work completed for Energy Networks Australia, November 2016.

Department of Industry (2016), https://industry.gov. au/resource/LowEmissionsFossilFuelTech/Pages/ Carbon-Capture-Storage-Flagships.aspx

Department of Industry (2016), https://industry. gov.au/resource/LowEmissionsFossilFuelTech/ Pages/Carbon-Capture-and-Storage-Research-Development-Demonstration-Fund.aspx

Finkel, A. (2016), Independent Review into the Future Security of the National Electricity Market – Preliminary Report, December 2016.

Global CCS Institute (2016), *The global status of CCS – 2016*, available from www.globalccsinstitute. com

International Energy Agency (2016), World Energy Outlook 2016 - Chapter 4.

IPCC (2014), *Climate Change 2014: Synthesis Report – Summary for Policymakers,* available from www.ipcc.ch

ITP Renewables (2015), ARENA Report - Report on renewable energy options for Australian industrial gas users, www.itpau.com.au/re-for-australianindustrial-gas-users/ Jacobs (2016), Australia's Climate Policy Options – Modelling of Alternate Policy Scenarios, available from www.energynetworks.com.au

Jandakot project - biogas, available from: https:// arena.gov.au/files/2015/11/Jandakot-Bioenergy-Plant.pdf

Kawasaki (2017), *Kawasaki Hydrogen* Roadmap, accessed from http://global.kawasaki.com/en/stories/hydrogen/

McKinsey & Company (2016), *The role of natural gas in Australia's future energy mix*, June 2016, available from www.appea.com.au

METI (2014), *Summary of the Strategic Road Map for Hydrogen and Fuel Cells*, accessed from: www. meti.go.jp/english/press/2014/pdf/0624 04a.pdf

National Grid (2016), *The future of gas – supply of renewable gas*, available from http://www2. nationalgrid.com/UK/Industry-information/Future-of-Energy/Gas/

Northern Gas Networks (2016), *H21 Leeds City Gate project*, accessed from: www.northerngasnetworks. co.uk/archives/document/h21-leeds-city-gate

Veolia (2017), www.veolia.com/anz/our-services/ services/municipal-residential/recoveringresources-waste/woodlawn-bioreactor

Important Disclaimer

Australian Pipelines and Gas Association, Australian Petroleum Production & Exploration Association, Energy Network Australia, Gas Appliance Manufacturers Association of Australia and Gas Energy Australia advise that the information contained in this publication comprises general statement. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, Australian Pipeline and Gas Association, Australian Petroleum Production & Exploration Association, Energy Network Australia, Gas Appliance Manufacturers Association of Australia and Gas Energy Australia (including their respective employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Copyright

© Energy Networks Australia 2017. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of Energy Networks Australia.

Jemena Limited

Submission to the Scientific Inquiry into Hydraulic Fracturing in the Northern Territory

Public

28 April 2017

An appropriate citation for this paper is:

Submission to the Scientific Inquiry into Hydraulic Fracturing in the Northern Territory

Contact Person

Benjy Lee Energy Policy Manager Ph: (03) 9173 7894 benjy.lee@jemena.com.au

Jemena Limited

ABN 95 052 167 405 Level 16, 567 Collins Street Melbourne VIC 3000

Postal Address

PO Box 16182 Melbourne VIC 3000 Ph: (03) 9713 7000 Fax: (03) 9173 7516

INTRODUCTION

Jemena welcomes the opportunity to respond to the Scientific Inquiry into Hydraulic Fracturing in the Northern Territory's (the **Inquiry**) Background and Issues Paper (the **Paper**). As a member of the Australian Pipeline and Gas Association (the **APGA**) and Energy Networks Australia (the **ENA**), Jemena also welcomes and supports the APGA and ENA joint submission to the Paper.

Jemena owns and operates a diverse \$9 billion portfolio of energy and water transportation assets across the east coast of Australia. This includes a regulated electricity distribution network which serves 320,000 customers in north west Melbourne, as well as part ownership of the United Energy and ActewAGL electricity distribution networks. We also own gas distribution and transmission assets throughout eastern and northern Australia. We are currently constructing the 622 kilometre Northern Gas Pipeline (**NGP**) from Tennant Creek in the Northern Territory (**NT**) to Mount Isa in Queensland.

Gas plays an important role in the Australian and NT economies as it provides an affordable, reliable and low emissions source of power for Australian households, electricity generation, commercial customers and large industrial users. It is the main source of power in the NT, given the generation fleet owned by Territory Generation in the Darwin-Katherine, Alice Springs and Tennant Creek regulated power systems is predominantly gas-powered generation¹. It is also a low cost alternative to diesel generation with lower emissions, which formed the basis for the decision by the Power and Water Corporation to extend gas supply to the remote community of Wadeye and replace the existing diesel power station with gas-powered generation².

There is currently a national public debate on energy policy settings in Australia following several high profile blackouts in South Australia in late 2016. In particular, the debate is centred around addressing the 'energy trilemma', which has been facilitated by the Dr Alan Finkel led *Independent Review into the Future Security of the National Electricity Market* (the **Finkel Review**). The term energy trilemma refers to the challenge of optimising three goals for Australia's energy future: affordability, energy security and reduced emissions.

Jemena in its submission to the Finkel Review advocated for a nationally consistent and technology-neutral approach to energy and climate policy design. This will create an environment that encourages a diverse range of energy resources to affordably and reliably supply customers, while meeting our emission reduction targets. With respect to the deliberations of the Inquiry's Expert Panel (the **Panel**) and broader NT Government policy, adopting a technology-neutral policy approach in the NT would allow it to:

- develop a diverse range of energy supply options;
- support NT Government policy objectives that electricity supply to Territorians be safe, reliable and at least
 cost in line with its Strategy for Northern Territory Utilities,³ and
- reduce its carbon emission levels consistent with the objective of the Roadmap to Renewables⁴.

The development of an onshore gas industry could positively contribute to these points and provide an alternative source of gas supply for the NT to further diversify the NT's energy sources and enhance energy security. Additionally, given the current supply crisis on the east coast of Australia, there is a window for action to work on developing an onshore gas industry in a safe, viable and commercial manner. Through providing a stable

¹ Page 5, Territory Generation 2016-17 Statement of Corporate Intent, <u>http://territorygeneration.com.au/wp-content/uploads/2016/12/2016-17 SCI Document - Public Final.pdf</u>

² 28 Sept 2015 Power and Water Corporation Media Release, *Gas flows to the Wadeye power station site*, <u>https://www.powerwater.com.au/news_and_publications/news/2015/gas_flows_to_the_wadeye_power_station_site</u>

³ Page 3, Department of Treasury and Finance Strategy for Northern Territory Utilities, <u>http://www.treasury.nt.gov.au/PMS/Publications/Economics/Utilities%20Reform/I-SNTU-2016.pdf</u>

⁴ Page 2, Roadmap to Renewables, <u>https://territorylabor.com.au/Portals/territorylabor/RoadmapToRenewables.pdf</u>

regulatory framework to allow onshore gas exploration and development, and certainty in relation to future rules development, the NT has an opportunity to attract investment and reap the economic benefits (including job creation and increased mineral and petroleum royalties).

The NT Government's *Roadmap to Renewables* document acknowledges the role gas has to play in ensuring stable base and peak load power generation would be maintained during the transition to its 50 per cent renewables by 2030 target⁵. Given modern gas-powered generation produces half the emissions of high-efficiency coal plants, the NT has an existing competitive advantage relative to other jurisdictions to contribute to reducing emissions immediately⁶.

Under a technology-neutral policy setting, gas also has the potential to provide Australians with reliable and affordable energy in a low carbon energy future. In late March 2017, the gas industry released Gas Vision 2050. The vision focuses on three transformational technologies that can help ensure gas continues to thrive in a zero emissions future: hydrogen, biogas and carbon capture and storage. Such a future requires technology-neutral policy settings so a diverse range of energy sources can be developed to meet customer's and society's needs.

Jemena believes that an important point is made in the Paper that there is a level of misinformation around the term 'unconventional gas' leads to misunderstandings that can cause concern. There is a large body of scientific literature in Australia and internationally which supports that an onshore gas industry can be safe and viable with an appropriate regulatory framework in place. The Inquiry should seek to leverage this previous work and where appropriate, build on it. Such a regulatory framework must also be fit-for-purpose, in that it must not be so regulatory onerous that it discourages investment and there needs to be a clear commercial focus in such a framework. The establishment of a statutory authority like GasFields Commission Queensland should be considered as a means to broker multiple stakeholder objectives on an ongoing basis, given the diverse range of views on onshore gas exploration and development.

1.1 THE ROLE OF GAS IN OUR ECONOMY NOW

Gas plays an important role in our economy as it is an affordable, reliable and low emissions source of power for Australian households, electricity generation, commercial customers and industrial users.

It is the single largest source of energy for Australia's manufacturing industry. Half of all gas used by industry in Australia is for mining and manufacturing, contributing \$196 billion to the economy, employing 949,000 Australians⁷. It is a vital ingredient for the manufacturing of, plastics, fertiliser, many household products, chemicals and explosives. It is an essential feedstock for these industries and in many cases there is no substitute. Gas is also vital for industries requiring constant very high temperatures, for example in brick and glass-making or in the hygienic disposal of medical waste and associated biohazards.

It is also an important source of reliable, affordable and low emission energy for Australian households. It currently provides 44% of household energy but produces only 13% of household greenhouse gas emissions. Gas supplies as much energy to Australia's households and industry as electricity does, and gas is also used to generate electricity. Almost 70 per cent of Australian homes (6.5 million) use mains or bottled gas⁸. Mains gas is delivered safely to homes, commerce and industry through extensive networks of underground transmission and distribution pipelines and the security of supply is second to none.

Gas is also an enabler of alternative (renewable) sources of generation by being able to quickly augment stable supply into the NEM and gas-powered generation provides frequency control ancillary services or FCAS that help

⁵ Page 4, *Roadmap to Renewables*, <u>https://territorylabor.com.au/Portals/territorylabor/RoadmapToRenewables.pdf</u>

⁶ Page 3, Gas Vision 2050, <u>http://www.energynetworks.com.au/sites/default/files/gasvision2050_march2017.pdf</u>

⁷ Page 3, Gas Vision 2050, <u>http://www.energynetworks.com.au/sites/default/files/gasvision2050_march2017.pdf</u>

⁸ Page 3, Gas Vision 2050, http://www.energynetworks.com.au/sites/default/files/gasvision2050_march2017.pdf

maintain system security. Hence it has an important (and largely unacknowledged) role to play in achieving renewable energy targets set at state levels.

Despite the significant role gas has in, and benefits it contributes to, the Australian economy, there is currently a predicted gas shortfall in the next couple of years in the Australian east coast gas market which is impacting on energy security and affordability.

1.2 EAST COAST GAS SHORTAGE

The impending gas supply shortage on the east coast of Australia has been well documented in the media, with headlines on the nation's energy crisis appearing every day. The Australian Energy Market Operator's (the **AEMO**) 2017 Gas Statement of Opportunities has forecast that a projected decline in gas production could result in a shortfall of gas-powered electricity generation impacting New South Wales, Victoria and South Australia from the summer of 2018-19. The scale of the shortfalls in gas-powered generation supply is set to breach the National Electricity Market's (the **NEM**) reliability standard which aims to supply at least 99.998% of electricity demand⁹.

In addition to the impacts on energy security and reliability, the gas supply constraints have also impacted on both the cost of wholesale electricity from gas-powered generation in the NEM (the Finkel Review recently acknowledged the linkage between the east coast gas market and the NEM). This has ramifications on affordability for not only gas-users but electricity customers as well.

This shortfall in gas supply has created demand (and urgent need) to develop new gas resources in order to provide affordable gas for the domestic market, the gas-powered generation fleet in the NEM and larger commercial and industrial customers. Australia has abundant onshore gas resources that are currently not commercialised. To bring new gas supply to market requires Australia to turn its attention under a coordinated approach to how we might develop our vast onshore resources in a safe and viable manner.

The NGP provides the NT with a readily available, affordable and scalable option to meet the east coast gas market demand and realise the substantial economic benefits associated with an onshore gas industry. The NT gas reserves have the potential to play a significant, and potentially even more important, role in addressing some of the supply-side issues in the east coast gas market that are being debated nationally.

1.3 ECONOMIC BENEFITS FOR THE NT AND THE BENEFITS OF DIVERSIFICATION

The NT is well placed to develop the gas reserves to meet this shortfall on the east coast of Australia, due to its existing onshore resources located in the Amadeus basin in Central Australia and other gas basins that are yet to be commercialised (including the recent discovery of significant volumes of gas (6.6 trillion cubic feet contingent resources) in the Beetaloo sub-basin by Origin Energy (in partnership with Falcon Energy and Sasol Petroleum Australia Limited))¹⁰.

The development of an unconventional onshore gas industry has the potential to provide economic benefits for the NT through:

• job creation through an onshore gas industry in remote regions of the NT;

⁹ Australian Energy Market Operator Media Release 9 Mar 2017, Media Statement - Gas development required to meet future energy demand, https://www.aemo.com.au/Media-Centre/Media-Statement---Gas-development-required-to-meet-future-energy-demand

¹⁰ Origin Energy Media Release 15 Feb 2017, Beetaloo Basin drilling results indicate material gas resource, <u>https://www.originenergy.com.au/about/investors-media/media-centre/beetaloo-basin-drilling-results-indicate-material-gasresource.html</u>

- additional and ongoing mineral and petroleum royalties revenue for the NT;
- offsetting the forecast \$2 billion in lost goods and service tax (GST) revenue¹¹;
- reducing the NT Government's \$875 million budget deficit¹²; and
- unlocking further critical investment in pipeline infrastructure in the east coast (such as a pipeline from Mount Isa to Wallumbilla), allowing greater volumes of NT gas to flow into the east coast market (which has the potential to enhance the economic benefits of the previous points).

Development of an onshore gas industry would provide alternative sources of gas supply for the NT and further diversify the NT's energy supply. This would provide greater energy security and diminish the chances of a repeat of the 11 September 2014 event where the NT's main source of gas at Blacktip and its back-up gas supply arrangements with Darwin LNG were both unavailable¹³. Maintaining reliable energy supply is important for an economy's productivity as businesses should have confidence they'll be able to carry out operations and not have to worry about whether or not the power will be there.

As previously noted, diversification in energy supply is best facilitated by technology-neutral policy. This encourages a wide range of energy sources and technologies (including batteries and distributed energy resources) to meet our energy needs and achieve the objectives of the energy trilemma; balancing energy security, affordability and lowering emissions. Modelling undertaken by ENA showed that under a technology-neutral scenario, households are better off by an average of \$216 per year on electricity bills compared to a business-as-usual scenario¹⁴. Such policy settings would allow grid transformational technologies to move from research and development stages into commercial operation.

1.4 THE ROLE OF GAS IN A CARBON NEUTRAL FUTURE

Gas Vision 2050 provides a platform for gas to not only provide affordable, secure and low emissions energy now, but to transition into an carbon-neutral future to meet customer's and society's expectations.

Gas-powered electricity generation is quick to start-up and quick to shut-down which makes it an ideal part of an energy system with an increasing component of energy generated from intermittent renewable resources. But backing up intermittent generators and supplying power to meet peak demand is just one of its future roles. By using co-generation and tri-generation, gas can provide heating, cooling and electricity to businesses and buildings that use it as a preferred energy source, such as restaurants. Gaseous fuels such as compressed natural gas (CNG), liquefied natural gas (LNG) and liquefied petroleum gas (LPG) will become an increasingly important source of low-emission fuel in the transport industry. Already, there are around 380,000 gas vehicles in Australia¹⁵.

As we continue to cut carbon emissions through the 21st century, transformational technologies including biogas, hydrogen and carbon capture and storage will be integrated with natural gas to further reduce emissions. These technologies exist today and, with further work to enable their integration into the energy generation and delivery system throughout Australia. Jemena is currently exploring opportunities to develop these transformational grid technologies with the NSW Government and the Australian Renewable Energy Agency.

¹¹ 24 Mar 2017 News Article, *NT hit with \$2 billion GST cut: treasurer*, <u>http://www.news.com.au/national/breaking-news/nt-hit-with-2-billion-gst-cut-treasurer/news-story/e7ed76e9bf33382f83737d4c08f3446db</u>

¹² Page 7, Northern Territory Government 2016-17 Mid-Year Report, <u>http://www.treasury.nt.gov.au/PMS/Publications/BudgetFinance/Mid-YearReport/R-MYR-1617.pdf</u>

¹³ Page 61, 2014-15 Power System Review, <u>http://www.utilicom.nt.gov.au/Publications/ReportsAndPublications/Pages/2016.aspx</u>

¹⁴ Page 3, Enabling Australia's cleaner energy transition, <u>http://www.energynetworks.com.au/sites/default/files/enabling_australias_clean_energy_transition_august_2016_1.pdf</u>

¹⁵ Page 3, Gas Vision 2050, <u>http://www.energynetworks.com.au/sites/default/files/gasvision2050_march2017.pdf</u>

An example of a transformational technology that is currently being explored is power-to-gas (**P2G**). P2G is the functional description of the conversion of electrical power into a gaseous energy carrier such as hydrogen, which can be stored in already established natural gas networks for later use. Basically, the P2G concept uses existing gas distribution infrastructure as a battery to store surplus renewable energy. Research and development policy support is critical to commercialising P2G and other transformational technologies.

Hydrogen as a fuel source has risen in popularity due to a resurgence of interest in fuel cells, hydrogen-powered vehicles and the "hydrogen economy". "Hydrogen can be produced from natural gas or through electrolysis using off-peak renewables. Carbon capture and storage is a proven technology for removing greenhouse gas emissions and can be applied to power generation, industrial processes that use natural gas, hydrogen production from methane, or even biogas production resulting in negative emissions. This leads to emission-free energy, where hydrogen can then be stored in the gas network, providing reserve energy in the same way battery technology does, in a carbon-neutral, secure and cost-effective manner, while also providing inter-seasonal energy storage¹⁶."

Such a future as the one envisaged in Gas Vision 2050 requires technology-neutral policy settings so a diverse range of energy sources can be developed to meet customer's and society's energy needs. Jemena has attached a copy of Gas Vision 2050 for the Panel's deliberations.

1.5 A SAFE, VIABLE AND COMMERCIAL ONSHORE GAS INDUSTRY

Moratoria have been applied to unconventional gas exploration and development in some Australian jurisdictions in response to community concern about the environmental, community and social impacts of hydraulic fracturing or 'fracking' methods to extract the gas. There is a large body of scientific research both in Australia and internationally which has found that an unconventional onshore gas industry can be viable and safe within an appropriate regulatory framework. These include:

- Report of the Independent Inquiry into Hydraulic Fracturing in the Northern Territory by Dr Allen Hawke
- Independent Review of Coal Seam Gas Activities in New South Wales by the NSW Chief Engineer & Scientist
- Drilling for Oil and Gas in New Zealand: Environmental Oversight and Regulation by the New Zealand Parliamentary Commissioner for the Environment
- Environmental Impacts of Shale Gas Extraction in Canada by the Council of Canadian Academies
- Shale Gas Extraction in the UK: a Review of Hydraulic Fracturing by the Royal Society and the Royal Academy of Engineering

Where possible, the Inquiry should leverage this previous research, and where appropriate, build on this body of work. Of particular pertinence to the Inquiry, is the finding from the *Report of the Independent Inquiry into Hydraulic Fracturing in the Northern Territory* by Dr Allen Hawke, "that the environmental risks associated with hydraulic fracturing can be managed effectively subject to the creation of a robust regulatory regime¹⁷." Utilising this large body of scientific research will provide the Panel with a strong basis to assess and determine the overall risk associated with hydraulic fracturing to the NT.

Jemena would advise that careful consideration must also be given to balancing the level of regulation required to create a safe unconventional onshore gas industry, against creating deterrents to investment through an overly onerous regulatory regime. While such a regulatory regime should encourage best practice principles in onshore gas exploration and development to minimise the impact on the surrounding environment, there needs to also be

¹⁶ Page 3, Gas Vision 2050, <u>http://www.energynetworks.com.au/sites/default/files/gasvision2050_march2017.pdf</u>

¹⁷ Page 3, of the Inquiry into Report Independent Hvdraulic Fracturing in the Northern Territory, https://frackinginguiry.nt.gov.au/ data/assets/pdf_file/0008/387764/report-inquiry-into-hydraulic-fracturing-nt.pdf

a commercial focus on developing these gas resources. Hitting the sweet spot between these two priorities will best allow the NT to optimise economic, environmental and social policy objectives.

Given the broad range of interested parties in the onshore gas debate, there needs to be a mechanism to adequately balance the plethora of views and expectations on this topic on an ongoing basis. The brokering of multiple stakeholder objectives in the development of an onshore gas industry has been shown to be possible through the establishment of GasFields Commission Queensland; an independent statutory body formed to manage and improve sustainable coexistence among rural landholders, regional communities and the onshore gas industry¹⁸.

The Queensland model is one that should be considered by the Panel as a means through which specific gas development projects can be considered in the context of the particular local issues that are important to various stakeholder groups. This will also remove the need for a 'one size fits all' policy solution. Such a statutory authority could be established on a standalone basis or the powers of the NT's existing independent economic regulator, the Utilities Commission, could be expanded to include this function.

¹⁸ About Us, Gas Fields Commission website, <u>http://www.gasfieldscommissiongld.org.au/gasfields/about-us/</u>